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We develop a Gaussian self-consistent method for the study of equilibrium and kinetics of con-
formational transitions of arbitrary heteropolymers in dilute solution. It is discovered that certain
chain sequences possess an additional symmetry that leads to reduction of the number of dynamical
variables and simplification of the equations. As an application of our general method we consider
the problem for a periodic ring heteropolymer with the sequence ab constituted by monomers of

two types with different second virial coefficients.

We present numerical results for equilibrium

and kinetics of this system on that subspace of the phase diagram where one group of monomers
can become hydrophobic. We find an interesting physical phenomenon of a phase separation that
accompanies the coil-to-globule transition. We believe that our approach may shed light on the
fundamental problem of protein folding; some of the results seem encouraging.

PACS number(s): 36.20.—r, 87.15.—v

I. INTRODUCTION

For many years considerable efforts have been directed
at achieving an understanding of the collapse transition
of homopolymers in dilute solution. Numerous studies
have been carried out on the equilibrium phenomena
[1-5] and lately there has been interest in the kinetics of
this process [6-9]. The equilibrium theory is quite well
understood and we have recently argued that homopoly-
mer kinetics is also now a relatively complete story [10].

Apart from the intrinsic interest in the homopolymer
problem there has long been an underlying belief that
such studies would lead us closer to an understanding
of the phenomena of biopolymer folding or compaction
as observed in proteins, DNA, and other molecules [11].
While this is partly true, it is our belief that the main
contribution of these works [12] is in providing a basis
from which to study the collapse kinetics of heteropoly-
mers. Thus it is widely accepted that among the essential
features required in a biopolymer model is the presence
of “frustration” due to a combination of monomer units
with some type of opposing tendency to associate or repel
each other, along with some connectivity constraint.

A logical consequence of this reasoning is that we
should now be in a position to apply the machinery that
proved successful in the kinetic studies of homopolymer
to, for example, periodic heteropolymers. A simple ex-
ample would be a copolymer composed of hydrophilic and
hydrophobic units with some periodic chemical sequence
along the chain. However, it transpires that simulation
methods for such frustrated problems are very difficult,
and it is unclear if there is a real possibility of deducing
the physical laws on this basis [13]. However, one of the
approaches we have developed, a sort of time-dependent
mean-field method, seems to be more promising.

Indeed, we shall here argue that the extension of that
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method to periodic heteropolymers allows us to capture
the essential features of kinetics of polymers that possess
frustration. The presence of frustration in the system is
expected to lead to new kinetic phenomena absent in the
homopolymer.

In that more simple case we have identified three dis-
tinct regimes. The first describes formation of a peri-
odic necklace of locally collapsed clusters along the chain
growing at the expense of their chain neighbors. This
process, although it originates in a local cluster growth
mechanism, is in essence a collective phenomenon akin
to the spinodal decomposition but here in the internal
metric of the chain. The second regime describes coars-
ening of the clusters and may be viewed as a constrained
form of the Lifshitz-Slyozov mechanism. Importantly, it
is dominated by the behavior of a nearly ideal chain of
locally collapsed globules. The third stage is a slow re-
laxational process of shape optimization and compaction
of a single globule. We have given concrete analytical
laws governing all three stages [9,10].

However, we know that, at equilibrium, the copolymer
typically has a tendency to expel its hydrophilic units to
the exterior, with hydrophobic units moving to the in-
terior. This may be viewed as some sort of constrained
phase separation and it is of considerable interest to know
if the overall scheme of homopolymer collapse outlined
above is retained, with an additional stage added, or
whether some more complex behavior emerges. It is also
important to deduce the concrete laws of kinetics for this
situation, for we have every reason to believe that these
may then represent a much better description of biopoly-
mer folding than the homopolymer case.

The remainder of this paper is organized as follows.
Firstly, we outline the general method to deal with ar-
bitrary heteropolymers. We then find that for a broad
class of sequences there is a symmetry in the metric of
the chain. This symmetry yields certain identities that
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allow us to simplify the basic equations. As an example
we apply the method to a simple binary (ab) periodic
sequence. The self-consistency equations are studied nu-
merically and results presented.

We emphasize that the method we described is com-
pletely general; any arbitrary heteropolymer, with ei-
ther ring or open topology, can be studied. In addition,
though we here use Gaussian-type mean-field theory, the
symmetry considerations are quite general and could be
implemented in a more detailed theory of an interacting
chain.

Finally, we point out that though the problem we study
has direct relevance to biological issues, it has funda-
mental significance from the point of view of statistical
mechanics. Thus, both fractal dimension and a density
order parameter are involved in the transition, a novel
feature in the field of statistical mechanics.

II. THE METHOD

Technically it is more convenient to consider ring het-
eropolymers possessing a periodic structure. More pre-
cisely we assume that the chain is constituted from
monomers of several different types in such a manner
that they form a certain fundamental sequence (block)
that is periodically repeated M times along the chain.
Let us denote by x the spatial position of the Ath el-
ement in the nth block. Upper case indices take values
A=0,...,K —1, where K is the length of a block, and
lower case indices take values n = 0,...,M — 1, where
M is the number of blocks in the chain. Evidently, the
total number of beads is equal to N = K M.

Now, consider the Langevin equation, which, in our
notation, is written

Cbif =~k Z JAAI n” - _QK + nn ) (1)
IAI
V= Z Z W) 5, Z H §(xB — xBir)
L=2B;-- myp i=1
(2)
MA@ () = 2kpT(Opn 624 5(t — t') (3)

with (mq1,B1) # (mit1,Bi+1). The matrix J;:‘,ﬁ of
spring constants may be described as follows. Its nonzero
elements can be written in the form

AA AA+1 . 7AA-1 __
Jn,;z =2, J'n.,’n - Jnn =-1,

(4)
n=0,...,M—1,

A=0,...,K—1,

where we have assumed the following convention:

—_ K-
JK LK Jn nilo =-1 ’ (5)

Jo-l= gok-l _ 1 (6)

n,n nnl_
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There are additional cyclicity properties in the chain in-
dex,

K-1,0 _ 7K-1,0 _
JM—-I,M = JM 1,0 — -1, (7)

0,K—1 0,K—1
JO,—I =JomM-1 = -1. (8)

One important observation is that, if one is restricted to
the Ath elements of blocks, such a subchain still possesses
the translational invariance along its members. Thus the
translation operator may be written as a multiplication
in the space of the Fourier modes

1 M-1
=g 3 AR
n=0

After the Fourier transformation the Langevin equation
(1) and (3) becomes

' ' ov
kg =—kD_ iM% — o5
' —q

£{9 = exp(i2mng/M) . (9)

(10)

(A O)mE (') = 2kpT(o_gp 644 8(t —1),  (11)
where ( = M (y, k = Mk, and the spring matrix is diag-
onal in ¢,

6A’B+1 _ 6A+1,B _

AB __ AB
JAB — 2648 _
__f;éA,K—l&B,O , (12)

fq(sA,O(;B,K—l

with f, = (@) It is simple to extend the Gaus-
sian self-consistent method [9,14,15] by choosing the
Gaussian stochastic ensemble,

At ==Y AVA (0)xg + g (t) (13)
-

with a nondiagonal effective potential. Formal ntegra-
tion of this equation yields

x el ex l ¢ 'V " o ’
olt) = GY (1,0) o x,(0) + ¢ [ dGY(t,8) 0my(t) .
(19

Here the bullet means matrix multiplication and the
Green function is the matrix time-ordered exponential,

v 1
G, (t,t') = Texp (_Z /, dt"AVZI(t")) . (15)

Using formula (14) one can calculate the average

3(xA,(tmd

Applying the technique described in Refs. [9,15] and
Egs. (10)—(13) one finds that the equal-time correlation
function,

(t)) = 2kpTs44" . (16)

FLAW) = §(x2,(0x4 (1) (17)

satisfies a nonlinear differential equation,
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CFAAL) = 2kpTo4 4 — kY (JAA FAA" 4 JA A" FAL"

A"

+§:z

L=2B;---B my--myp

where ) g, = (2m)ED/2{) o and AND s

the matrlx of size L — 1 with the elements

A(;f“l) DBlBt+1 yB1Bjt1
T,

MIMi41,M1Mj41 )

(19)

the cofactors being denoted by Ag'_l). We have also

used the contracted notation

d(Q)AA d(q)AA'
— “mimip1,mim;1B1Biy1,B1Bjt1

(20)

These four-body coefficients are, in turn, related to fr, (@
by

(9)AA (—9)A  (9)A’
dn'im: nn!,BB',CC' — = Crom BB/ Crmi CC 1
(21)
O pp = V58 — 55068,
and the quantities
BB',CcC' B B'\(.C c’
Dmm nn' T 3((xm - xm’)(xn — Xy )) (22)

are the Fourier transforms of the internal modes .7-';1‘4',

DBB’ oc = Z dﬁzlﬁtnms’ CC']: A’ (23)

mm' nn' T

q,AA’

The four-body functions may be reduced to simpler two-
body ones defined by

d(q) m!'BB' = dSnm { mm!BB',BB' > Dmm' = 7?15"’,?n?r:' )
(24)
using the following relations:
dmzn ,an',BB',CC' = 3 @ nBCct T dm 'nB'C
—dne — dnrmor) (25)

Analogous relations hold for Dflﬁ pet '. The foregoing

treatment may be generalized to include the hydrody-
namic interaction and the results are described in Ap-
pendix A.

It is interesting to note that, in comparison to a ho-
mopolymer, the modes f()“A' describe conformational
motions as well as diffusion of the center of mass. The
radius of gyration may be expressed through the Fourier
modes as follows:

RX(t) = Z FLAt) + 535 21{2 S z44, (26

q,+-0 A AA'

where we have introduced K (K — 1)/2 linear combina-

,&g;) B, Z (detA(L—l))—5/2 Z A(L 1) Z(d(Q)AA }-A A" dz(j—Q)A'A"]_-f;i”) ,

(18)
Y‘7 1 A'I
[
tions of the zero modes [16],
ZAA = FAA L FEA _oFAA = L(RA - RA)?)
(27)
— A

These quantities are the mean squared distances between
the center of mass of the Ath and A’th monomers in all
blocks. Note that these combinations, Z44', of the zero
modes contribute to the spatial correlations in (23). The
diffusion mode describes the center of mass of the whole
polymer and is given by the formula

g5

The remaining K — 1 independent linear combinations,

= FP - H(RY)? ~

(29)

Fp = (RA)?)

A=1,...,K—-1, (30)
satisfy homogeneous differential equations, which thus
leads to a trivial solution if the initial condition is equal
to zero.

Now, let us write down formulas for some important
observables. The average energy is

H) = 2 5 Re(Ip FM)

q,AA’

+Z Z A(L) B, Z (detA(L 1)) 3/2

=2Bq-- my---mp

(81

The static structure factor of light scattering in the
nonequilibrium situation is defined in terms of the equal-
time correlations

xm (O1}) - (32)

s(k,t) = Z (exp{ik - [xB(t) —

n'n' BB'
In the Gaussian self-consistent approach the average may
be written as

s(k,t) = (33)

1
X 2

nn'BB'

oo (- p20)

It is useful also to consider the density of monomers that
occupy the Ath position in blocks,
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pA(r) = <Z 5(xA —R—r)> , (34)

measured from the center of mass of the whole polymer
R. The calculation shows that this function is given by
a three-dimensional Gaussian distribution normalized to
M with variance G4,

1 1 I

A AA AB BB

GA=3"F; D248 - 5 > 2P (39)
q#0 B BB'

The function G4 has the simple meaning of the partial
radius of gyration of Ath monomers according to the for-
mula

1 A
Rj=42> G". (36)
A

In conclusion, let us discuss some limiting cases. By
setting ﬁg;) B, = @(I) one should obtain a homopoly-
mer. Thus, the correlation functions should coincide with
those of a homopolymer D;-‘";-f“ = I((x; — x;+)?) for cor-
responding monomer positions j = Km + B,

BB' __ hom
Dmm’ - DKm+B,Km'+B’ . (37)

By a straightforward but somewhat tedious calculation,
one can demonstrate that in this limit Eq. (18) reduces
to the appropriate equation for a homopolymer. Let us
mention also that for a ring homopolymer F§'4 is inde-
pendent of the block index A and thus the variables Y4
are trivial. This follows from formula (37) and the prop-
erty that (xf) is j independent for a ring homopolymer.

Another curious limit is the heteropolymer with only
one block M = 1, i.e., no periodic structure. In this
limit the Fourier and spatial monomer positions coincide,
since the chain indices could take only the value q =
n = 0. Note that all our previous formulas will remain
valid in this case for both ring and open polymer [17].
Thus, we shall have K (K + 1)/2 equations of motion to
determine, generally speaking, a nondiagonal symmetric
matrix FA4'

III. THE INVERSION SYMMETRY AND
REDUCTION OF THE DEGREES
OF FREEDOM

We begin by noting that, although the spatial corre-
lations Dﬁf:, are real and positive, the quantities .7-';“4”
are complex as are the equations of motion (18). For
practical applications this is a somewhat inconvenient
circumstance. However, for a broad class of chain se-
quences there is an additional symmetry property of the
chain that allows us to exclude some redundant degrees of
freedom, and thereby make the correlation functions real.
This symmetry is much more general than the Gaussian
self-consistent method itself that we currently develop.

Let us denote by c(A) the monomer type of the Ath
element of a block. We say that the chain possesses inver-
sion symmetry if by considering the chain in the reversed
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direction we see the same sequence of monomer types af-
ter a shift of some number of positions L, called the rank
of a sequence,

c(L—1—-A)=c(A) (modK) . (38)

Thus, all observables should remain invariant under the
transformation of the chain index generated by such shift
of the chain reference point and inversion of the direction.
Obviously, by the definition, L is determined only by the
block sequence. Indeed, if we shift the chain reference
point by s beads, and thus change the block sequence, L
would be transformed by

L — L+2s (modK) . (39)

Thus, it is always possible to choose s so that L will be
equal either to zero or K — 1 [18]. The rank for such a
choice of s will be called canonical. The resulting sym-
metry properties can be obtained in the following formal
way. Consider a block of the length K and construct the
matrix ® by the following algorithm:

0 1 K -1
&= ¢(0) ¢(1) --- c(K —1) (40)
0 0o -.-- 0
Let us invert the matrix
_ K-1 K-2 - 0
P =| ¢(K—-1) ¢(K—-2) --- ¢(0) | . (41)
0 0 o0

Now we have two sequences, ¢(0)c(1)---c¢(K — 1) and
c(K — 1)c(K — 2)---¢(0). Let us perform cyclic right
shifts of the matrix columns. We move the last column
to the first position until we recover the original binary
sequence. This is not always possible. Simple examples
of irreducible sequences that do not possess this prop-
erty are “abaabb” and “ababbabbb.” Now, consider the
resulting matrix

w(0) w(1) --- w(K —1)
®" =1 ¢(0) c(1) --- (K —-1) . (42)
P@©) P(1) --- P(K—1)

Here 7(A) denotes the permutation of the original or-
dered sequence 01--- K — 1 producing the required se-
quence of positions within the block. We have also used
the notation P(A) = 1 if w(A) is the image of A that
has been moved from the last position to the first by
cyclic shifts, and zero if it has just been shifted within
the matrix range. Thus, by construction, the last row will
contain some number of units L, the rank of the block,
and K — L zeros. Now, we can write ®” in more detail
as

L-1 --- 0 K—-1 --- L
" =| ¢(L—-1) -+ ¢(0) c(K—1) --- ¢(L) | . (43)
1 o1 0 .0

~ N >
-~ ~~

L K—-L
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Explicitly m(A) can be presented in the form

g fL-1-4, 0<A<L-1
m(4) = K—-1+L—-A, L<A<K-1,

(1, 0<A<L-1,
P(A)‘{o, L<A<K-1 (44)
and it possesses the property c(n(A)) = c¢(A). The fol-
lowing identities hold:

A4 _ pr(A),m(AT)
Dmm’ - Dm’+‘P(A),m+'P(A') ’

AA'=0,...,K—1, mm'=0,...,M—1, (45)

and for the Fourier variables this identity takes the form

y:;lA = f;P(A) P(A)j:;r(A )m(4) (46)
Lemma: Identities (46) for any nonzero q yield
K(K — 1)/2 real independent equations and thus the
number of real independent degrees of freedom in fAA
does not depend on the block rank and is equal to
K (K+1)/2if the inversion symmetry exists for the chain.
The proof is given in Appendix B.
It is of importance to construct a unitary transforma-
tion A, over the block indices,

Fa= Al F Ay, (47)

that would give rise to a real symmetric matrix f-'q with
exactly K(K + 1)/2 for (¢ # 0) nontrivial elements. In
Appendix C we consider the construction of this trans-
formation and here we shall only present the results. De-
note by II the permutation matrix corresponding to the
permutation (44) for a canonical choice of rank. Let us
consider first the sequence of canonical rank L = 0, for

which

I-IAA’ — 5K—1—A~A',0 . (48)

Then, the transformation matrix is ¢ independent and
may be taken simply as

—in/4
V2

The case of the canonical rank L = K — 1 is more elab-
orate. The permutation matrix there has the structure

e

A:

(IT + i1) . (49)

Haoz' = f[aa' — 5K—2—a—a',0

I

HK—lK—l =1 HK—IO(

=m*K-1=9, (50)

where a,a’ = 0,..., K —2. Then the transformation may
be taken in the form

) ¢ —in/4
A’ = Joo! - f ¢ I +41) ,
q 7z ( )
K—1K—-1 _ r1/2 K—-1la __ aK—1 __
Af =f1%, AK-tle= p2K-1=0. (51)
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These considerations collectively lay out the formal
structure necessary to deal with all heteropolymers with
a fixed sequence of monomers. However, to illustrate the
approach we now turn to the simplest possible example,
a copolymer with block of size two.

IV. ab SEQUENCE

Suppose that a block consists of just two monomer
types a and b. The matrices (40)—(42) have the form

01 01
d=|ab ], =|ab |, (52)
00 10
and Eq. (46) yields only one relation,
01 _ px(01y\%
Fq =fi(F) - (53)
Thus, the variable
3 _ r1/2
Fi=f12FM (54)

is real (F2)* = F2, and the diagonal elements are real
by definition. Let us perform the unitary transformation
over the block indices,

Fo= A7 F Ay, Jo= A7VIT A,
(55)
d9 = AN (dD)T 4, ,
where the transformation matrix is [19]
A = A1 0 exp(—inq/2M)
9 q —exp(irq/2M) 0 ’
(56)

The resulting matrices .7--q and jq are real and symmetric
and have the form

~ ]:11 _7:3
]:q - ( ]:3 ]:03 )
(57)
o= 2 2 cos(mg/M)
77\ 2cos(wg/M) 2 ’
The equation of motion (18) now becomes explicitly real
and may be written in block matrix notation as

(F,= 2kaT1 - k(Fody + T, 7y)

+Z Z a3 5 S (deta®1)=5/2

L= 231 my-myp
x Z AG TV FdP +dPNF,) (58)
2,j=1

where d}g) = Re(ig). The two-body coefficients can be
presented by the following matrix in indices AA’:



dffilussr = Redf,‘iin ,mm!,BB' BB’

3(q)
— gnfgn) 'BB' _g'nf:zn’BB' (59)
3(q) 0(q) :
gm'rn’BB' 9mm'BB’

Here the coefficients ¢{?) also may be written as the ma-
trices in BB’,

o(q) _ 4sin2%_m—’) 1
Im' — 1 0 ,

(60)

g (0 1
mm 1 4sin? "—Q("Iz‘;m) ’

3(q) _ 0 —cos4L2"'q("’_ﬂ;1""1 2)
Imm' = _C0527rq(m—n1ln'+1/2) 0
(61)
The matrix DBE) is related to j_-;m’ by ’
M-1
DEB. = N tr(d?), p g Fy) + Z(68°68 4 5B165'0)
g=1
(62)
and the radius of gyration is equal to
M-1
1 zZ
2 00 , i1
Rg=§Z(}'q +FEN+ T (63)
q=1

Note that we have separated the contribution of the zero
mode Z from the rest of the expression. We can define
three independent linear combinations of the zero modes
according to (27)-(30),

W = F° + Fo' + 275, (64)
Y=Y'=FP-Ft, Z2=2"=FP + 7t -273 .
(65)
These variables satisfy the equations of motion,
(W = 4kpT , (66)
Y =2(=2k +IO)Y | (67)
(Z = 4kpT + 4(—2k + IO Z | (68)

where 19 is given by the relation

10(2) = Z Z a®) . S (detaz-my-s/2
L=2B;-- ml"‘mL
L-1 N
x D0 AGTVED. (69)

3,j=1
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Equation (66) describes the diffusion of the center of mass
of the whole polymer. Equation (67) is homogeneous and
thus, for our problem, it has only a trivial solution Y = 0,
this being a consequence of a homopolymer initial con-
dition. Moreover, even for a nontrivial initial condition
from Egs. (67) and (68) one can see that Y (t) — 0 at
t — oco. Finally, Eq. (68) describes those conformational
motions that affect the mean square difference between
the centers of mass of a and b monomers. Only the vari-
able Z contributes to (62) and (63) and it may be con-
sidered as an order parameter characterizing the global
spatial distribution of monomers of both types. As we
shall see, it is one of the good order parameters in de-
scribing the kinetics of collapse of the ab copolymer.

V. NUMERICAL RESULTS

In this section we present the results from numerical so-
lution of the self-consistency equations (58) for the ab se-
quence. Our main purpose here is to illustrate the advan-
tages of the Gaussian self-consistent approach for an ex-
ample of equilibrium and kinetics phenomena. However,
being the simplest example of this type of situation, this
study uncovers an interesting physical phenomenon—
essentially a type of phase separation accompanying the
coil-to-globule transition.

It is known [10,20] that for most cases it is sufficient
to account for the excluded volume effect only up to the
three-body interactions, i.e., one may set u(X) = 0 for
L > 3. Moreover, one may assume that the third virial
coefficients are the same for both types of monomers
ugl)B,B,, = u®), so the only difference between a and b
monomers will be in the second virial coefficients. Let
us introduce the following useful parametrization of the
second virial coefficients,

a® = L(u§)) + o +2uf) (70)
ul® = J(ufy —u?) (71)
= ((2) ﬁ) 27"01)) (72)

There are several interesting physical problems corre-
sponding to different planes in the three-dimensional
phase space. We may mention the much studied so-

called “charge” model [21,22], where ul® = 0. Here we
shall consider a less analytically tractable but more in-
teresting case from the point of view of applications to

biopolymers, uflz) = 0. It arises naturally in the lattice
model of copolymers [13], if one assumes that a and b
monomers have equation interaction constants with each
other and only differ by their interaction constants with

the solvent. In Ref. [23] the condition ugz) = 0 has been
also chosen as it is related to the incompressibility con-
dition of the solvent. Let us assume that u(z) < ugzl), so
that ¢ monomers might be interpreted as hydrophoblc
and b as hydrophilic. It is natural to work with the com-

binations £ = (kpT/x)*/? and T = (3/k as the units of
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! A‘Al
D'r?zg (£%) 200 a, 1
A, FIG. 1. Plots of the equilibrium values of
\\ the space correlations D3 (diamonds), D2},
150 "‘n_\‘ | (crosses), and D3, (triangles) vs the chain
N index m for different values of the second
kY virial coefficient @® (from top to bottom):
100 “-\,‘ | a® =5, ﬂ,(:z), and —25. For convenience we
§o0sana, a have drawn the plots only on one of the sides,
\ ‘\k and they may be extended to the other one
i . x i by the inversion symmetry properties.
tl“‘ \‘\A
'
.WLAM“‘M“M‘AAM‘::&
o . . . ;

40 50 60

M2

size and time in the system. In the sequel we have used
the following particular choice of parameters: kgT = 1,
K =1, and (p = 1, which fix £ and T equal to unity.

Here we are interested in studying the effect of the hy-
drophobicity at equilibrium and in kinetics. Thus, we
work with a fixed second virial coefficient of hydrophilic
species. In our numerical study we have fixed this as
uﬁ) = 15kpT L3, and also u(®) = 10kpTL® [24]. Hence,
we shall consider only a line in the phase space of the sec-
ond virial coefficients parametrized by only one variable
@), This variable has the simple meaning of the “mean”
second virial coefficient between both species. The point
a(® = ugi) corresponds exactly to the homopolymer in
the Flory coil.

A. Equilibrium

Setting the time derivative in (58) to zero, one gets a
set of nonlinear algebraic equations for determination of
the equal-time correlation functions at equilibrium for a
given value of @(?).

70

m

The region @(?) < ugf‘;) corresponds to the good solvent
condition. We find that in this region all the observables
we considered are very close to those of a homopolymer
with the second virial coefficient @(?). Indeed, the over-
all excluded volume interaction is repulsive here, and its
strength is proportional to the mean second virial co-
efficient between beads, i.e., @(?). The upper curves in
Fig. 1 show that the mean squared distances between like
monomers along the chain are very close to each other in
this region, D% ~ D}l,. One can show that using this
equality Eq. (58) becomes the equation for a homopoly-
mer with (3 = @(®). Thus, the mean-field theory for
this region may be conceived as the theory of an effective
homopolymer.

This approximation breaks down near the 6 point
@ ~ 0. In Fig. 2 we exhibit the behavior of the
squared radius of gyration, RZ, the heat capacity. Cy =
(1/2)0(H)/84@®, and the density difference of hydropho-
bic and hydrophilic species in the center of mass of the
whole polymer, Ap = p°(0) —p*(0), in the vicinity of this
point. At @(® = aﬁz) the heat capacity has a sharp peak.
This may be a signature of a first-order-like transition.
On the one hand, the radius of gyration falls strongly

80
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FIG. 2. Equilibrium plots of the squared
radius of gyration R2, the heat capacity Cv,
and the density difference of hydrophobic and
hydrophilic species Ap vs the second virial
coefficient @ across the transition. The
point a® corresponds to the critical point,
in which the heat capacity reaches its maxi-
mum.
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TABLE 1. Values of the equilibrium radii of gyration vs the degree of polymerization N for the
heteropolymer (uff) = —40) and the homopolymer (uff) = 0) collapsed globules. Here v denotes

the swelling exponent of the scaling law Ry ~ N”.

Radius of gyration 30 50 70 100 150 200 v
R2(a® = —25, 4 =0) 1.186 1.910 2.585 3.528 4.956  6.247  0.42+0.03
R2(a® = —25, ul® = —40) 1.858 2.461 3.024 3.878 5513 7.502  0.36+0.04

near this point, similar to the ordinary coil-to-globule
transition. We note that there is a new order parame-

ter, namely, Ap, that almost vanishes for @(® > a&z) and
grows quickly in the poor solvent region.

The latter parameter reflects the degree of microphase
separation of a and b components. The phase separation
leads to the equilibrium globule where the hydrophobic
species tend to be in the core of the globule and the hy-
drophilic ones form the exterior. Of course, the Gaussian
self-consistent approach imposes special restrictions on
the density distribution functions p“(r), since these can
only be a Gaussian shape. Thus, the phase separation
in our method leads to a wider dispersion of hydrophilic
beads, G, compared to the dispersion of hydrophobic
ones, G°. One can see this from Fig. 2 and the relation

Ap=(2m) GO — (G (1)

Similarly, the phase separation manifests itself in the
splitting between the functions D% and D}}, in Fig. 1.
The gap is distinguishable but relatively small at the
critical point (middle curves), and is quite pronounced
for large negative values of the second virial coefficient
(lower curves).

Concerning the order of the phase transition, it obvi-
ously requires a careful analysis of the system with re-
spect to size scalings. This analysis has not as yet been
accomplished by us for sufficiently long chains. Our cur-
rent thinking is that this transition grows to become dis-
continuous (first order) in the infinite size limit but we
emphasize the novel feature of the transition itself. Thus,
not only is the fractal dimension of the system chang-
ing, but there is, as we have seen, phase separation of

120

the hydrophobic and hydrophilic units. Indeed we also
comment that it is noteworthy that there appears to be
only one transition rather than consecutive ones for the
different processes. In any case, these are rather sub-
tle questions that would require a separate and rather
comprehensive study, and our emphasis here lies on the
generic kinetics features of the problem.

Finally, we would like to compare the radii of gy-
ration of the heteropolymer and the homopolymer col-
lapsed globules. The results are presented in Table I for
the same value of @(?) and two different values of u®.
From those data one can find that for sufficiently long

chains the scaling law R; = AN?¥ is valid for both cases

with v = % with the constant A being larger for the het-
eropolymer. This may be explained by the observation
that the heteropolymer globule possesses a less dense hy-
drophilic exterior compared to the completely compacted

homopolymer globule.
B. Kinetics

Now let us consider the kinetics after a quench @(?) =

u(lzl) — @@’ from the homopolymer Flory coil to the

region @' < a'®. We refer the reader to a previous
work [10] for the details of the homopolymer kinetics.

It turns out that for some time after this quench the
behavior of the global observables of the system is close
to that for an effective homopolymer that has undergone
the same quench. In Fig. 3 we exhibit the complete,
R:, and partial, G4, squared radii of gyration, such that
R} = (G° + G')/2, as well as the squared radius of gy-

GA () 100
80
60
40

20

FIG. 3. Plots of the partial, G° (dia-
monds), G (crosses), and the complete, R2
(dashed line), radii of gyration vs time ¢ for
polymer with the degree of polymerization
N = 150. The final value of the second virial
coeflicient is equal to @®" = —25. The solid
line represents the squared radius of gyration
of homopolymer after the same quench. The
value 7; has been taken from the results of
Ref. [10]. Point 7, corresponds to the char-
acteristic time of the phase separation.
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FIG. 4. Plots of the Fourier modes }-;)o

(diamonds) and Fj' (crosses) vs time ¢ for
polymer with the degree of polymerization
N = 150 at different values of the chain in-
dex g (from top to bottom): ¢ = 1, 2, and 20.

The final value’of the second virial coefficient
is equal to @(? = —25.

0.001 | = .

ration of the effective homopolymer. They coincide ap-
proximately up to the time 7;, which we have previously
interpreted as the duration of the first (spinodal) kinetic
stage of homopolymer [9,10]. Thus, for sufficiently small
quenches the same kinetic law is valid during this stage,

R2(t) = R%(0) — At*

t<T, (74)

where a; = (2 — vp)/(2vF + 1) with vp = 2 being the
Flory exponent. The duration of this stage, 7;, is essen-
tially independent of the degree of polymerization, re-
flecting the localized character of cluster growth mech-
anism at this stage. However, from Fig. 4, where we
draw the time evolution of the internal modes ffA(t),
one can see that large-g modes describing conformations
on small distances along the chain (lower curves) already
show certain deviation from each other. This means that,
although our spinodal picture of the first stage is still cor-
rect, the local structure of the clusters that are forming
is different from those in the homopolymer. Visualiza-
tion of polymer conformations in Monte Carlo simula-
tion of the system [13,25] shows that these clusters look

30

t (1)

like small prototypes of the copolymer collapsed globule
with a tendency for a hydrophilic exterior and hydropho-
bic interior. Meanwhile, the small-¢ modes that describe
conformations on large scales (upper curves) do not yet
exhibit this splitting.

The difference between G4 and the homopolymer
squared radius of gyration for ¢; < t < 7, in Fig. 3 be-
ing significant, there is almost no difference here between
G° and G!. In fact, all large-scale characteristics of the
system are quite similar for hydrophobic and hydrophilic
species up to some time 75. For example, in Fig. 4 this
is true for all sufficiently small-g¢ modes, .’F;‘A. Thus, the
difference between contributions of @ and b monomers to
such global characteristics remains almost negligible up
to the time 7,, when there is a precipitous change reflect-
ing a sort of phase separation. We note that around this
time the rapid change is driven by the small-g modes.

Let us consider the time evolution of the mean squared
difference between the center of mass of hydrophobic and
hydrophilic monomers, Z, presented in Fig. 5. During
the beginning of the spinodal stage Z drops significantly,
which is natural for the high-¢ modes of homopolymer.
Then it remains nearly constant for a comparatively long

Z (c?)

FIG. 5. Plots of the mean squared dis-
tance between the center of mass of a and
b monomers Z vs time t for polymers with
the degrees of polymerization (from top to
bottom): N = 50, 70, 100, and 150. The

final value olf the second virial coefficient is
1 equal to a® = —25.

12 14

16

t(ry —
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TABLE II. Values of the characteristic time of the phase separation 7, and the final relaxation

time 74 vs the degree of polymerization N for different second virial coefficients a®’,

Here the

quantity v denotes the exponent of the appropriate time in terms of the degree of polymerization,

ie, T~ N7.

Time 20 30 50 70 100 150 200 ¥
(@@ = —4) 5.35 12.0 30.4 53.3 87.2 166 240 1.57+0.09
. (@?®" = -10) 2.20 4.32 9.70 15.8 24.1 42.8 59.6 1.3640.08
(@@ = —25) 0.80 1.44 2.93 4.60 6.85 12.1 17.0 1.3040.04
(@@ = —50) 0.338 0.57 1.09 1.55 2.48 4.37 6.22 1.25+0.03
r(@® = —4) 1.0 2.3 5.2 12 22 44 84 1.90+0.08
7+(@® = —25) 0.14 0.33 0.73 1.22 2.26 4.37 7.14 1.67+0.07

time, after which it suddenly begins to increase rapidly.
Thus, practically it is simple to define 7, as the point of
maximum of the time derivative of Z. From Fig. 3 one
can see that 7, defined in this manner really may be con-
sidered as the characteristic time of the phase separation.
It is also clear from Fig. 4 that all internal modes undergo
rapid changes on a narrow time interval around 7,. This
interplay between different observables is a signature of
the strong mode coupling during the phase separation.
In Table II we present the numerical values 7, for differ-
ent degrees of polymerization and quenches. Using the
results for homopolymer kinetics from Ref. [10] we can
obtain the following bound on the time 7,:
Ti < Ts < Tm (75)
where 7,, ~ N2 is the characteristic time of the middle
stage of homopolymer kinetics. This bound suggests that
the dependence of 7, on the degree of polymerization is
also a power law 7,,, ~ N7, and in Table II we have
presented numerical values of this exponent for different
quenches. There is clearly some crossover in this expo-
nent, which appears to be higher for smaller quenches.
The long plateau approximately between 7; and 7, in Z
may be considered some kind of metastability in kinetics.
To be able to make such an interpretation we should

study the time evolution of the mean energy (31), and
this is exhibited in Fig. 6. Indeed, the mean energy falls
strongly during the first kinetic stage. Then, the plateau
in Z corresponds exactly to the region of slower decrease
in the mean energy, which is terminated by a new rapidly
falling regime at 7,. Metastability usually arises due to
some potential barrier. Thus, after the first stage there
is a chain of locally collapsed clusters that have already
phase separated. The hydrophilic shells on the exterior of
these clusters partially screen the attractive interaction
between their cores and impede their further unification.
A remaining overall attraction still draws these clusters
together, and they form a crumpled low density globule
as the overall radius continues to decrease. Thus, there
is no true metastable state for the system studied, but
it is clear that the number of available directions in the
coordinate space that the system can move in is greatly
reduced because barriers have been created.

Note that if the excluded volume effects (both attrac-
tion and repulsion) were of a finite scale and the block
length longer, it would be possible to achieve almost a
complete screening of the hydrophobic attraction by the
hydrophilic repulsive shells. In that case the metastabil-
ity would become profound (e.g., due to a random dis-
tribution such as in Ref. [13]), and we would see a very
long metastability time analogous to the spin glass kinet-

600 ¥ T T T T T

(H) (ksT) s00 |

FIG. 6. Plots of the mean energy (H) vs
time ¢ for polymers with the degrees of poly-
merization (from bottom to top): N = 70,
100, 150, and 200. The final value of the sec-
ond virial coefficient is equal to a®' = 4.

A .
o 50 100 150 200 250
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FIG. 7. Plots of the nonequilibrium static
g structure factor s(k,t) vs time ¢ for polymer
with the degree of polymerization N = 150
E at different wave numbers k (from top to bot-
tom): k = 0.05, 0.1, 0.2, 0.5, and 1.0. The
1 final value of the second virial coefficient is
equal to @' = _25.

ics [26].

Now, our globule continues to undergo a uniform
shrinking due to effective attraction, and when it be-
comes relatively dense, the repulsive barrier of the hy-
drophilic shells is overcome. There appear certain collec-
tive excitations of the system that repel the hydrophilic

components to the surface of the globule. The more
hydrophilic units that are removed to the surface, the
stronger the overall attraction becomes. Thus, the glob-
ule experiences an abrupt contraction accompanied by
the simultaneous global phase separation of the densi-
ties. We deal here with a strong nonlinear collective ef-
fect, which manifests itself in such nonregular time de-
pendencies as we have seen. The process stops when the
shrinking force becomes balanced with the excluded vol-
ume effect.

Now we should address a seeming paradox in Fig. 3.
Indeed, it appears strange that despite the metastability
in the behavior of the time evolution of the copolymer,
its collapse proceeds much faster during the coarsening
stage prior to the phase separation than that of the ef-
fective homopolymer (solid line). In fact, the concept of
such an effective homopolymer is only useful when there
is effective averaging of the second virial coefficients be-
tween both components. This happens while the distri-
bution is, in the ensemble average sense, uniform along
the chain. As we know, a small-scale phase separation
during the earliest kinetic stage violates such uniformity
at about the end of this stage. Therefore after the first
kinetic stage the rate of collapse is determined by ué%)
rather than by @(?). Since the middle stage character-
istic time scales for homopolymer [10] at 7,, ~ |u(®)|~2
and in our case the quench is deeper |u((,%)| > |a®|, our
copolymer collapses much faster. We emphasize there-
fore that caution should be used in applying “smeared”
mean-field approximations to discuss heteropolymers, al-
though such ideas are certainly attractive due to their
relative simplicity.

Let us also mention that the global phase separation
effect should be directly observable experimentally. For
example, in Fig. 7 we present the nonequilibrium static

30

structure factor (32) as a function of time for different
wave numbers k. This quantity also grows strongly near
75, and this effect is especially pronounced for moderate
k, which probes the internal structure of the polymer.

Finally, there is a relaxational stage describing further
compaction and shape optimization of the globule. Dur-
ing this stage all global characteristics change relatively
little. Their deviation from the final equilibrium state
is a single exponential. The final relaxation time 74 of
the square radius of gyration is presented in Table II.
The dependence of this time on the degree of polymer-
ization appears to be similar to the homopolymer [10],
‘l'f ~ N 5/ 3.

VI. CONCLUSION

The method we have outlined is the natural extension
of the homopolymer work [9,10,15] that has been quite
successful so far. It has been possible to reduce the equa-
tions to a tractable numerical form, though of course a
complicated block structure leads to quite a large set of
equations.

We have numerically studied in much detail the sim-
plest case of an ab sequence polymer at equilibrium and
the kinetics on a line in the phase space. At equilib-
rium we have observed a first-order-like transition from
the homopolymer Flory coil to the phase separated glob-
ule, with a hydrophilic exterior and mainly hydrophobic
core. Kinetics after the heteropolymer quench proceeds
in the same way as the homopolymer kinetics at the ear-
liest stage and has a certain similarity to it during most
of the coarsening stage. However, as the polymer ap-
proaches close to a single globule there appears to be a
new kinetic stage after a time 7, describing the large-scale
phase separation of hydrophilic and hydrophobic units.
This is characterized by a rapid change of all observables
and is, in fact, a nonlinear collective phenomenon arising
due to strong mode coupling. The final stage of collapse
kinetics is also analogous to homopolymer, being a single
exponential relaxational process towards the final equi-
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librium state.

Thus, in the case we have studied the three stages of
homopolymer are essentially preserved, with the same
laws being applicable excluding the middle stage. A fur-
ther stage is inserted into the process after a character-
istic time 7, that scales with a power of N. Thus, unlike
conventional phase separation the whole polymer chain is
involved in the separation of hydrophobic and hydrophilic
units. The process is seen to be driven by the collective
(small-¢g) modes, and naturally this is reflected in the, at
first surprising, conclusion that the time of onset of rapid
change in a quasi-first-order transition should depend on
the large number N.

Here we would like to discuss some of the features of the
present formalism that should remain of importance to
applications of the method to heteropolymers with more
complicated block structure. Clearly, there are no seri-
ous obstacles to their study apart, of course, from purely
computational restrictions as the number of dynamical
variables grows roughly as M K?2. Thus, to be able to
make significant progress for the whole range of chain
compositions one has to use an additional ansatz that in
one way or another takes into account additional struc-
tural properties of a block. For example, such properties
are expected for a block consisting of two homogeneous
subblocks of lengths K’ and K" each composed of the
same units. This simplification of the equations would
allow us to study different “thermodynamic” limits: (1)
M — oo, K = const; (2) K — o0, M = const; (3)
M — oo, K — 0o, M/K = const. Some of the equilib-
rium and kinetic properties of the phase transition may
in principle depend on which of these limits is used.

On the one hand, for arbitrary blocks, we shall have
the same order parameters, G4 and Z 44" From prelim-
inary Monte Carlo simulations [13,25] we have also seen
that the basic phenomenon remains essentially the same,
with modifications only in the concrete laws. A better
screening of the hydrophobic cores for longer blocks gives
rise to a stronger metastability in kinetics, which may
even appear in such quantities as the radius of gyration.
One may expect this to occur for the following reasons.
The variables Z44'| since they directly reflect the degree
of the phase separation between different components,
should qualitatively behave in the same manner as Z for
ab sequence. From Eq. (26) it is also clear that the con-
tribution of these modes becomes more significant with
increasing of the block length K or, equivalently, decreas-
ing of the number of blocks M. In the limit M = 1 only
the variables Z44' contribute to the radius of gyration.

aa BB'
qu

Paa’ (ﬁ’) = 6aa’ - "Da'lba’ ]

(q) ( q) dw ’Paa.(w)
M2 Zf /(27r)3 w2 P
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Thus, the metastable plateau of Z44" may manifest itself
in the radius of gyration as well.

In summation then, we find that the inclusion of am-
phiphility into the model, and the weak form of frustra-
tion thereby implied, introduces a new kinetic effect that
may lead to an arrest of the folding process, followed after
some time by a rapid collective separation of the different
types of units. We comment on the accompanying laws,
but there remains some uncertainty there. Nevertheless,
we believe that the phenomenon is generic, and we would
expect to see something of this kind of phenomenon in
experiments.

Finally, having given some attention to the formalities
of the method, we have laid the foundations for a gen-
eral understanding of folding of periodic heteropolymers.
We believe that, as a consequence, the way is now open
to permit extraction of any generic processes that govern
folding, and their accompanying physical laws of kinetics.
It cannot be long before this is accomplished for periodic
heteropolymers, and, though there are some remaining
complications for random systems, we have recently been
able to show [27] that there are now no fundamental bar-
riers to a direct attack on that problem too. If this is
the case and indeed, as we currently believe, there are
universal kinetic laws for these systems, then they may
soon lie within the grasp of theory.
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APPENDIX A: INCLUSION
OF HYDRODYNAMICS

Let us briefly discuss the treatment of the Oseen tensor
in our method. Thus, Eq. (10) will be replaced by

.aB __ E : aa'BB' ;a'B'’
T = qul ¢ql 3

q
a'B'q’

(A1)

where qu;,'B' is the right-hand side of Eq. (10) and the
Oseen tensor is

’WZ Sl;:z'[}?B'xA(t) + MC 6> ‘sqq'éBBl ’ (A2)

Wo = Wao/w ,

where (n,B) # (n/,B’) and 7, denotes the viscosity of the solvent. Calculating its average we obtain the inverse

mobility matrix,
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(Hoa' BBy = 62§00 (CTH PP . (A3)
A simple deviation yields the result
' 2 —n! M
(C‘;—I)BB _ + v Z expli2mg(n — n')/M] (A4)

(DBE"Y1/2 ’
where v; = 1/[3(27%)1/21,M?]. Consequently in the “preaveraged” approximation [2,15] Eq. (18) can be replaced by

FfA = UGBTI E 4 (CHAETARY, (45)

q
BI
where F?’A(t) = %(xf’q(t)d)

A= kp TN kYD T LA LS 3. bl

A" L=2B;--

After the unitary transformation to real variables (A5)
will become

-7~'-q = fng +£qf‘q s

where T'y = = A 'TgA, and & = AN T A, For the
ab sequence of Sec IV we obtain after the transformation

N 511 _¢01
£q= (_Z;o 523 ) ’

(A7)

(A8)

with {;0 = {21. These mcbility coefficients are given by
s 0BF (2),BB’
T T MG " 2 (DEEYE (49)

where we used the notation

(2),00 _ (‘1) m_ 2_71(71'—_—"") A10
e €y = COS Y , ( )
e(nqg o — (q,),;lo = cos 2mq(n _J\Z, —1/2) . (A11)

APPENDIX B: PROOF OF THE LEMMA

Indeed, let us consider independently subsets of L and
K — L block indices corresponding to P = 1 and 0. Then,
when both A, A’ belong to the first subset, Eqgs. (46) may
be written as

AA" _ rL-1—-A'\L-1—-A
FA = F] ' ,

0<A<A <L-1, (Bl

and the number of real independent equations is equal to

L/2, L even

NLL,diag = { (L-1)/2, Lodd, (B2)

?(t)), which has been calculated earlier,

L D (detalEm)erz E A 3 g@0ad" paar

ml---mL hi=1 At
(A6)
[
 _ [ L(L—-2)/4, Leven (B3)
ML L,nondiag = (L — 1)2/4 s L odd , (B4)

L-1)/2. (B5)

NLL = NLL,diag T+ 2nLL,nondiag = L(
Similarly for another subset we have
nK_L’K_L:(K—L)(K—L—-l)/Z. (BG)

Also there is the mixed case for which we can write
Eqgs. (46) as

A,L+A" __ K—-1-A"\L-1—-A
Fq = fqFq , 0<A<A<L-1,
(B7)
and the number of real independent equations is
nNL,K—-L = L(K - L) . (B8)

Summing up we finally obtain ng independent real equa-
tions

ng =np L +NK-LK-L+NLK-L = K(K — 1)/2 .
(B9)

APPENDIX C: CONSTRUCTION OF THE
UNITARY TRANSFORMATION

Let us consider identity (46) and formula (44) sepa-
rately for L=0and L =K — 1.
(1) In the L = 0 case formula (44) becomes

m(A)=K—-1-A, P(A)=0, 0<A<K-1,

(C1)
and hence we can write (46) in the matrix form
Fq=TFIT, (C2)

assuming notation (48). Thus, if we find A a square root
of II, such that
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A2=T1, AT=A, ATA=1, (C3)
with A being another square root, then from Eq. (46)
and Hermiticity of Fy it will trivially follow that the ma-
trix f-"q = AfF,A will be both Hermitian and symmetric.
It is easy to check that formula (49) gives the square root
of II with all required properties.

(2) In the L = K —1 case II is given by (50), and hence
we can write (46) in the form

’

(C4)

Faa' _ (15 T 11\ e’ K—-1K—-1 _ rK—-1K-1
F& = (H}-q II) » Fq =7

aK—1 __ —11jaa’ ~K—1a'
Fe = qu e’ 7} ,
al
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where a,a’ = 0,...,K — 2. Thus, for submatrices fq

and II of the size K — 2 we get the problem analogous
to that considered in (1). The matrix element FJ~1K~1
is explicitly real. Finally, for the remaining nondiagonal
elements similarly one can check that the combination

Fo = LA FE

o'

(Cs5)

is real due to (C4). Combining our results together we
get the compact form of the unitary transformation (51).
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